- Dirichlet boundary conditions
- Макаров: краевые условия Дирихле
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Dirichlet boundary condition — In mathematics, the Dirichlet (or first type) boundary condition is a type of boundary condition, named after Johann Peter Gustav Lejeune Dirichlet (1805–1859) who studied under Cauchy and succeeded Gauss at University of Göttingen.[1] When… … Wikipedia
Dirichlet eigenvalue — In mathematics, the Dirichlet eigenvalues are the fundamental modes of vibration of an idealized drum with a given shape. The problem of whether one can hear the shape of a drum is: given the Dirichlet eigenvalues, what features of the shape of… … Wikipedia
Dirichlet's theorem — may refer to any of several mathematical theorems due to Johann Peter Gustav Lejeune Dirichlet. Dirichlet s theorem on arithmetic progressions Dirichlet s approximation theorem Dirichlet s unit theorem Dirichlet conditions Dirichlet boundary… … Wikipedia
Boundary value problem — In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional restraints, called the boundary conditions. A solution to a boundary value problem is a solution to the… … Wikipedia
Dirichlet conditions — Not to be confused with Dirichlet boundary condition. In mathematics, the Dirichlet conditions are sufficient conditions for a real valued, periodic function f(x) to be equal to the sum of its Fourier series at each point where f is continuous.… … Wikipedia
Dirichlet's energy — In mathematics, the Dirichlet s energy is a numerical measure of how variable a function is. More abstractly, it is a quadratic functional on the Sobolev space H1. The Dirichlet energy is intimately connected to Laplace s equation and is named… … Wikipedia
Boundary conformal field theory — In theoretical physics, boundary conformal field theory (BCFT) is a conformal field theory defined on a spacetime with a boundary (or boundaries). Different kinds of boundary conditions for the fields may be imposed on the fundamental fields; for … Wikipedia
Cauchy boundary condition — In mathematics, a Cauchy (pronounced koe she ) boundary condition imposed on an ordinary differential equation or a partial differential equation specifies both the values a solution of a differential equation is to take on the boundary of the… … Wikipedia
Dirichlet , (Peter Gustav) Lejeune — (1805–1859) German mathematician Born in Düren (now in Germany), Dirichlet studied mathematics at Göttingen where he was a pupil of Karl Gauss and Karl Jacobi. He also studied briefly in Paris where he met Joseph Fourier, who stimulated his… … Scientists
Mixed boundary condition — Green: Neumann boundary condition; purple: Dirichlet boundary condition. In mathematics, a mixed boundary condition for a partial differential equation indicates that different boundary conditions are used on different parts of the boundary of… … Wikipedia
Robin boundary condition — In mathematics, the Robin (or third type) boundary condition is a type of boundary condition, named after Victor Gustave Robin (1855 1897) who lectured in mathematical physics at the Sorbonne in Paris and worked in the area of thermodynamics.… … Wikipedia